R. Le Roux

PROGRAMME DE COLLES DE CHIMIE PC*1

SEMAINE N°4: 13 AU 19 OCTOBRE

Formules de Lewis de la semaine : HN₃, SO₂, CrO₄²⁻, KrF₂, S₈, PbCl₄, S₂O₅²⁻, B(OH)₄-, S₂O₈²⁻, SH₃+, H₄SiO₄, ClO⁻, XeF₆, H₂CO, BO₃³⁻, CCl₂, ClO₂-, SO, Br₂O

COURS

CHAPITRE 5: GRANDEURS DE RÉACTION

- I. Définition
 - I.1 Grandeur de réaction
 - I.2 Grandeur standard de réaction
 - I.3 Relations entre grandeurs de réaction et grandeurs standard de réaction
 - I.3.1 Enthalpie de réaction
 - I.3.2 Entropie et enthalpie libre de réaction
- II. Enthalpie standard de réaction (rappels)
 - II.1 Calcul
 - II.2 Interprétation physique de la valeur de $\Delta_r H^{\circ}$
- III. Entropie standard de réaction
 - III.1 Entropies molaires standard
 - III.1.1 Troisième principe de la thermodynamique (rappels)
 - III.1.2 Interprétation physique des entropies molaires standard
 - III.2 Entropie standard de réaction
 - III.3 Influence de la température sur $\Delta_r S^{\circ}$
- IV. Enthalpie libre standard de réaction
 - IV.1 Relations entre $\Delta_r G^{\circ}$, $\Delta_r H^{\circ}$ et $\Delta_r S^{\circ}$
 - IV.2 Expression de $\Delta_r G^{\circ}(T)$ dans l'approximation d'Ellingham
 - IV.3 Autres modes de calcul de $\Delta_r G^{\circ}(T)$
 - IV.3.1 Calcul de $\Delta_r G^{\circ}(298 \text{ K})$
 - IV.3.2 Calcul de $\Delta_r G^{\circ}(T)$
- V. Grandeurs standard de changement d'état

CHAPITRE 6: ÉVOLUTION ET ÉQUILIBRE CHIMIQUE

- I. Critère général d'évolution et d'équilibre
 - I.1 Réécriture de la troisième identité thermodynamique
 - I.2 Condition d'évolution et d'équilibre
- II. ΔrG, constante d'équilibre et quotient de réaction
 - II.1 Constante d'équilibre K° et quotient de réaction Q
 - II.2 Expression de l'enthalpie libre de réaction $\Delta_r G$ en fonction de K° et Q
 - II.3 Nouvelle formulation du critère d'évolution et d'équilibre
- III. Équilibre chimique
 - III.1. Loi d'action de masse (LAM) ou relation de Guldberg et Waage
 - III.1.1 Démonstration
 - III.1.2 Expression d'une LAM dans différents cas
 - III.1.3 Sens physique de la valeur de K°

III.1.4 Détermination de l'état final du système

III.2. Influence de la température sur K° – Relation de van't Hoff

→ seule démonstration exigible : dans le cadre de l'approximation d'Ellingham

III.3. Application : différentes méthodes de calcul de K°

IV. Courbe $G(\xi)$ pour une réaction à T et P constantes

IV.1 Tracé de la fonction $G(\xi)$

IV.2 Calcul de ΔG , ΔH et ΔS

IV.3 Forces motrices d'une réaction chimique à T et P fixées

CHAPITRE 7 : FACTEURS DE L'ÉQUILIBRE CHIMIQUE

Introduction

- I. Variance ou nombre de degrés de liberté d'un système à l'équilibre
 - I.1 Définition de la variance v
 - I.2 Méthode de calcul de la variance
- II. Déplacement ou rupture d'équilibre
 - II.1 Variance et rupture d'équilibre
 - II.2 Équilibre hétérogène et rupture d'équilibre
 - II.3 Méthodes d'étude des déplacements d'équilibre
- III. Optimisation de la température et de la pression
- \rightarrow Lois de van't Hoff et de le Châtelier sont des résultats de cours à connaître et à savoir démontrer sur un *exemple* concret
- \rightarrow En exercice, pour justifier un sens de déplacement d'équilibre consécutif à une modification de T ou de P, il faudra le démontrer par le calcul sur le cas d'étude.
- IV. Optimisation des paramètres chimiques
- → Aucune loi de déplacement n'est exigible pour ce qui concerne les paramètres de composition

CHAPITRE 8 : ÉQUILIBRES HÉTÉROGÈNES – RUPTURES D'ÉQUILIBRE

(PAS de question de cours sur ce chapitre)

- I. Système siège d'une seule réaction chimique
 - I.1 Résultats fondamentaux
 - I.2 Quelques conseils
 - I.3 Étude d'un exemple
 - I.4 Cas d'une réaction mettant en jeu deux gaz

TRAVAUX PRATIQUES

Conductimétrie

Spectrophotométrie UV-visible

EXERCICES

Thermodynamique : chapitres 1 à 8 en particulier autour de l'équilibre chimique, des déplacements et des ruptures d'équilibre (exercices pas trop difficiles sur ce dernier thème).

Chimie des solutions PCSI (acides-bases, précipitation, diagrammes E-pH)